
 

 

1 Shilpi Sindhu et al. 

Plant Archives Vol. 24, Special Issue (GABELS), 2024 pp.255-265            e-ISSN:2581-6063 (online), ISSN:0972-5210 

  

 

 

Plant Archives 
 

Journal homepage: http://www.plantarchives.org 
DOI Url : https://doi.org/10.51470/PLANTARCHIVES.2024.v24.SP-GABELS.038 

  

 

PIONEERING AGRICULTURAL TRANSFORMATION: UNLEASHING THE POWER 

OF IOT AND AI FOR SMART FARMING AND SUSTAINABLE HARVESTS 
 

Shilpi Sindhu*, Bharat Garg, ShikhaYashveer, Anita Verma and  Reena Rani 

Department of Molecular Biology and Biotechnology, College of Biotechnology, C.C.S. H.A.U.,  

Hisar -125004, Haryana, India 

*Corresponding author E-mail: shilpisindhu@gmail.com 
 

  

ABSTRACT 

Agriculture is essential to the advancement of human civilization. Agriculture provides a living for the 

majority of people in developing and poor countries. Farmers have numerous obstacles in agriculture, 

such as obtaining expert guidance, monitoring crops, and using manual ways to do vital farming chores 

such as irrigation, among others.  Agriculture-related problems have consistently slowed down the 

nation's progress. Intelligent agriculture is the only approach that can solve this issue. Utilising the 

natural resources in a variety of environments is essential for achieving higher yields through Smart 

Agriculture (SA). Agriculture automation and intelligence are addressed by Smart Agriculture. The 

automation of picture analysis using computer vision and deep learning models, the Internet of Things 

(IoT), and associated technologies will be one potential answer to the aforementioned challenges with 

agriculture and food demand. SA makes use of specialised sensors and algorithms to make sure that 

crops receive the exact nutrients they require for maximum yield and sustainability. SA entails gathering 

precise sensors datafrom fields regarding the condition of soil, plants, crops, and climate. From manned 

or unmanned satellites or airborne platforms, high-resolution photographs of crops are acquired, which 

are then processed to extract data for upcoming decisions.  

Keywords: Smart Agriculture, Agriculture automation, Internet of Things (IoT), Artifical Intelligence 

(AI) 
  

 
 

Introduction 

Agriculture holds a pivotal role within society, 

serving as the primary source for a substantial portion 

of the global food supply and raw materials for 

construction. Its significance extends beyond mere 

sustenance, playing a fundamental role in the economic 

advancement of nations while offering a plethora of 

employment opportunities. Yet, despite its critical 

importance, many farmers persist with outdated and 

inefficient farming methods, resulting in subpar yields 

of essential food crops and fruits. Notably, 

advancements in automation have led to increased 

productivity, with automated machinery replacing 

manual labour in several agricultural processes. Hence, 

to maximize output and meet the demands of a 

growing population, it becomes imperative to embrace 

cutting-edge research and technology in farming 

practices. 

The emergence of "Smart Agriculture" represents 

a concerted effort to address the challenges posed by a 

burgeoning population and stagnant food production. 

This paradigm shift in agricultural production 

integrates the latest technological advancements with 

traditional farming practices. Leveraging technologies 

such as the Internet of Things (IoT), big data, cloud 

computing, and Artificial Intelligence (AI), Smart 

Agriculture aims to revolutionize various aspects of 

agricultural operations. These technologies, showcased 

in Table 1, enable enhanced information gathering, 

analytical decision-making, precise control 

mechanisms, efficient resource allocation, and 

personalized services tailored to individual farming 

needs. 
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Driven by the relentless march of Science and 

Technology (S&T), the agricultural revolution is 

propelled forward by an emphasis on improving 

agricultural efficiency and overcoming contemporary 

challenges. As highlighted by Liu et al. (2020), the 

progress of S&T serves as a catalyst for innovation 

within the agricultural sector. Through the adoption of 

Smart Agriculture practices, farmers can optimize 

resource utilization, minimize environmental impact, 

and increase overall productivity, thereby ensuring 

sustainable agricultural practices for future generation 

sensors installed on agricultural farms may access the 

exact topography, weather predictions, temperature, 

and soil acidity. The information gathered by 

agricultural drones, satellites, and sensors is used in 

smart farming to assist farmers in planning their work. 

The robots are capable of doing a variety of 

autonomous agricultural operations, including sowing, 

harvesting, and in some situations, post-harvesting. A 

robot harvester's core functionality should include the 

following features: detection of the fruit or maladies, 

collecting the produce without destroying it, guidance 

of the harvester through the field, navigation in any 

lighting or climate condition, low cost, and a 

simple engineering layout (Silwal et al., 2017).  

Agricultural robots carry out their agricultural tasks 

either as autonomous self-propelled machinery or as 

systematically controlled sophisticated devices. 

Unmanned aerial vehicles (UAVs) or unmanned 

ground vehicles (UGVs) that are controlled by GPS 

and GNSS are examples of autonomous vehicles.  

Lighting and crop changes present difficulties for 

agriculture automation used to carry out farm tasks 

(Payne et al., 2013). With a variety of sensors and 

cameras, modern machine vision algorithms and 

machine learning models can address these 

shortcomings. Remote monitoring devices are 

currently being used to provide useful information to 

agriculturalists. Wireless technologies are essential for 

data collection and communication processes. This 

paper will look at the most recent developments in 

remote sensor networks and IoT agriculture 

applications, as well as the problems and challenges 

faced by network and software for smart agriculture. 

Smart Agricultural Wireless Technologies 

The most noteworthy technologies that are 

transforming agriculture today and will shape it in the 

future include: 

IoT in agriculture: IoT is critical to the management 

of agricultural resources and the monitoring of crop 

health in the agricultural sector. IoT in agriculture 

makes use of internet-connected sensors, drones, and 

robotic devices that perform activities automatically or 

partially autonomously in order to boost cultivation 

and reliability. Agribots, also known as agriculture 

automation and robots, are starting to get the devotion 

of farmers due to the intensifying demands and labour 

shortages seen globally. For data collection and data 

exchange in the IoT, wireless technologies are crucial. 

Wired transmission is challenging to implement in that 

environment given the features of different fields in 

agriculture. As a result, field agriculture uses WSNs 

technology more often than cable transmission. Using 

automation and IoT technology, Gondchawar & 

Kawitkar (2016) planned work on IoT-based smart 

agriculture aimed to make agriculture smart. The 

utilisation of GPS-enabled intelligent remote-

controlled robotic devices is anticipated for the 

purposes of weed removal, chemical application, and 

humidity sensing. These devices integrate proficient 

control mechanisms, advanced decision-making 

capabilities, precise watering techniques informed by 

real-time field data, and effective warehouse 

management strategies. 

The management of all activities will be 

facilitated by smart device, which will establish 

communication with various sensors, ZigBee modules, 

cameras, and actuators in order to execute these 

operations. In order to monitor the crop field, 

Rajalakshmi & Mahalakshmi (2016) used soil 

humidity sensors, temperature and humidity sensors, 

light sensors, and a computerized irrigation system. 

Sensor data is encoded in JSON format and wirelessly 

delivered to the web server in order to maintain the 

server database. When an agricultural field's 

temperature and moisture content are threatened, the 

irrigation system will automatically activate. 

Notifications are sent to farmers' mobile devices on a 

regular basis, allowing them to check on the status of 

their fields remotely. This methodology was 92% more 

effective than the traditional method and will be more 

useful in locations with lack of water. According to 

Kassim et al. (2014), the implementation of WSN in 

SA maximises the utilisation of water and fertiliser in 

irrigation while also boosting crop yield. IoT-based 

sensor applications in Smart Agriculture for soil 

moisture, temperature, irrigation etc. are presented 

in Table 2. 
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Remote Sensing for agriculture: For the last two 

eras, Remote sensing applications have been used 

extensively in agriculture to assess plant health, 

estimate yield and crop loss (%), control irrigation, 

identify crop stress, detect weeds and pests, forecast 

weather, and gather agricultural phenological data, 

among other things. Considerations for remote sensing 

platforms for spectrum pictures include airborne, 

satellite, and unmanned aerial vehicle (UAV) platforms 

(Rudd et al., 2017).  

Satellite-Based Platforms: The space-borne 

programme is considered the most reliable platforms 

for Remote Sensing. Examples of these platforms 

include spacecraft rockets, and space shuttles. Based 

on their orbits and timing, space borne platforms are 

grouped. High spatial resolution is one of the benefits 

of satellite-based remote sensing, making it promise 

for the extraction of large amounts of broadcasting 

data. The illustration obtained by satellite programmes 

are stable and free of interference, typically introduced 

during image capture owing to interference. The 

primary issue with satellite-based platforms, 

meanwhile, is the expensive price of high spatial 

resolution imagery. The another issue is that they have 

a rigidly set timetable, making it impossible to collect 

data at crucial times.  The other major issue is satellite 

programmes that are so sensitive to climate, if it's 

gloomy out, the graphic that is collected will have less 

information in it. The most regularly used satellite 

platforms for obtaining hyper spectral imagery are 

Quick Bird, Landsat-8, and Sentinel. 

Airborne-Based Platforms: The term "Airborne" or 

"Aerial Imagery" refers to imagery captured by 

manned aircraft. Cameras or imaging systems are 

manually operated on the aircraft. A multispectral or 

hyperspectral imaging system generally consists of 

more than one camera, processor system, along with 

display to gather and show data in real time. Smart 

agriculture has made heavy use of airborne 

multispectral imaging systems since the 1990s because 

of their inexpensiveness, excellent resolution, speed, 

and capacity to gather data in spectrum ranges that are 

equivalent to those of traditional satellite sensors 

(Mausel et al., 1992, King, 1995). In United States 

alone, there are hundreds of agricultural aircraft that 

are employed for production and protection of crop 

products. Aerial imaging equipment carried by these 

planes may monitor crop development, detect 

agricultural pests (such as bugs, diseases, and weeds 

infestation), and assess the efficacy of both ground-

based and airborne applications. 

Unmanned Aerial Vehicle (UAV)-Based Platforms: 

Satellite and airborne platforms provide a dynamic 

alternative to UAV platforms, which are relatively 

adaptable and inexpensive. A standard platform for an 

unmanned aerial vehicle (UAV) contains a number of 

sensors mounted to it, in addition to a communication 

and navigation system.  UAVs are frequently 

constructed with an autonomous drone system that is 

outfitted with sensors and cameras for the purpose of 

monitoring the height and overall health of crops. A 

wide range of Unmanned Aerial Vehicle (UAV) 

models have been developed, with fixed-wing and 

multirotor platforms being the prevailing options 

within the UAV domain. Choose the right and proper 

UAVs based on the farm's agriculture. The 

aforementioned UAVs and remote sensing methods 

assist farmers in taking the proper actions at the proper 

time to safeguard the crops against illnesses. The 

Unmanned Aerial Vehicle (UAV) based approach is 

illustrated for smart agriculture monitoring in Figure 1. 

Additional benefits of the UAV for low-altitude remote 

sensing include strong mobility, simple construction, 

and high-resolution image acquisition (Zhang et al., 

2021, Delavarpour et al., 2021). Agricultural fields can 

also be sprayed with fertiliser and pesticides using the 

unmanned aerial vehicle (Rahman et al., 2021). A huge 

number of geographical photographs with a high 

resolution were taken with the UAV in order to 

categorise and identify the leaf spot that was present on 

the banana. This contributes to the overall 

improvement of the algorithm's efficiency (Calou et 

al., 2020). Pests and insects in agricultural crops are 

observed through quantification, prediction, 

identification, and classification. It determines the 

severity of the yellow Sigatoka attack using aerial 

photos taken by UAV and DIP (digital image 

processing). It will serve as a different approach for 

determining the damage in the field (Calou et al., 

2020). The classification of soybean pest photos 

received from the UAV is assessed using deep learning 

architectures. The experimental outcomes 

demonstrated that, in comparison to other methods, 

deep learning architectures trained with fine-tuning can 

result in greater classification rates, with accuracies as 

high as 93.82%. The findings show that the examined 

architectures can help experts and farmers manage 

pests in soybean fields (Tetila et al., 2020). 
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Fig. 1 : UAV operating system 

 

Agricultural robots; Over the past decade, 

agricultural robots have drawn a lot of interest and are 

now widely regarded as one of the most promising 

paths towards a more productive and sustainable 

agriculture sector. Agricultural robots are intricate 

systems and automatic navigation is primary capability 

for Autonomous agricultural robots (Gan and Lee, 

2018). Agricultural robots and related technologies are 

required for various activities in smart agriculture, like 

harvesting fruit, monitoring crop productivity (Idoje et 

al., 2021), spraying, disease detection, and weeding 

(Benos et al., 2022). Agri-robotic systems offer a 

plethora of new prospects that will aid in the transition 

to net zero agriculture. (Pearson et al., 2022).The 

overall application of IoT based agricultural robots is 

shown in Figure 2. 

A vision-based weeding robot with spraying 

system for weed management in a lettuce field was 

proposed by Raja et al. 2020 based on a crop signalling 

concept.  According to experimental findings, 98.11% 

of sprayable weeds were found, while crop recognition 

accuracy was 99.75% (Raja et al., 2020).In row-

transplanted paddy fields, Adhikari et al., 2019 

suggested a convolutional encoder-decoder network-

based system for distinguishing between weeds and 

crops. Luo et al., 2020 introduced Faster Region 

Convolutional Neural Network (Faster-RCNN) to 

improve the performance of machine vision in peach 

tree detection for weeding robot and showed that the 

average detection precision rate was 86.41%.Based on 

deep learning technology, Quan et al., 2022 created a 

new vertical rotating intra-row robotic weeding system 

for maize. Results of the trials revealed that the crop 

detection rate was 98.50% and the weed detection rate 

was 90.9%.  
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Fig. 2: Agricultural robotic application 

 

Plant categorization requires phenotyping robots 

to assist measurements of certain features such as 

canopy-related characteristic detection, such as stem 

diameter (Vijayarangan et al., 2018) and plant height 

(Bao et al., 2019). Kang et al., 2020 created an 

intensive neural network to aid robotic apple picking 

by detecting and grasping fruit in real-time utilising a 

computer vision system. Ogorodnikova and Ali (2019) 

developed a method for identifying mature tomatoes in 

a controlled environment setting using a harvesting 

robot's machine vision system which transformed RGB 

colour images to HSV in order to isolate the mature 

tomato from the green background, using an image 

processing technique. Bai et al., 2023 proposed a 

unique vision algorithm based on the shape and growth 

characteristics of clustered tomatoes for target 

identification and picking point localization. The 

recognition time was less than one second, and the 

recognition model's precision, recall, and accuracy 

were all up to 100% (Bai et al., 2023). 

Data analytics, Processing and storage in smart 

agriculture  

Massive volumes of data are produced by the IoT, 

and data analytics can be used to analyse data from 

many types of network sensors, forecast environmental 

trends, and develop data-driven solutions. IoT data can 

monitor several parts of a field, including irrigation 

systems, and alert farmers to illnesses and 

unfavourable weather situations like flooding or 

drought (Lee et al., 2017). Figure 3 depicts how data 

analytics are used to carry out smart agriculture; 
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Fig. 3 : Data analytics operation in smart agriculture 

 

Data analytics can be divided into the following 

categories depending on the needs of IoT applications: 

i. Device-level data analytics (Safa & Pandian, 2021) 

ii. Big-data analytics (Zikria et al., 2021) 

iii. Real-time data monitoring (Zikria et al., 2021) 

iv. Image data analytics 

Device-level data analytics is the process of 

statically analysing data that has been temporarily 

stored in memory (Safa & Pandian, 2021). Big-data 

analytics is delicate process for analysing massive 

volumes data to extract data that may help businesses 

make wise business decisions, such as variations, 

market dynamics, and consumer preferences (Zikria et 

al., 2021). Real-time monitoring method applies logic 

and statistic data to produce insights that may be 

utilised to make quicker and more informed decisions. 

Real-time analytics basically refers to the practise of 

performing analyses as soon as new data becomes 

available for some circumstances (Zikria et al., 2021). 

Several applications of image data analysis have been 

utilised extensively in agriculture, including weed 

identification, irrigation, fruit quality evaluation, and 

disease identification in leaves, stems, and fruits. To 

increase the effectiveness of crop production, image 

processing and IoT have recently been applied in 

agriculture. Cloud computing is used to analyse and 

store the data. An automated self-decision framework 

based on data analysis can be utilised to alter the 

environmental conditions. In addition, a warning signal 

may be issued to farmers in case extreme conditions 

occur or a bug is discovered in the warehouse. 

Applications of WSN in Smart Agriculture 

WSNs are currently used in the agricultural 

industry for a variety of purposes. Smart pest control, 

smart fertilisation, smart irrigation, and monitoring of 

greenhouses are a few very popular applications. 

Smart water management: Use of numerous sensors, 

IoT can effectively regulate water management, 

thereby reducing water waste. The water level in the 

tank can be monitored with the help of sensors, and 

data can be uploaded to the cloud and accessed from a 

mobile app. The water level may be checked by 

farmers using their smartphones. Using this method, 

the motor can be set to operate without human 

intervention. The motor will begin running when the 

water level drops and stop when the water level rises 

too high. Up to 50 percent of this water is wasted in 

over watering due to flaws in traditional irrigation 

methods and systems (Sheng et al., 2013).  

Smart Irrigation Systems: The implementation of 

developing Internet of Things technologies anticipated 

to affect the current state of crop irrigation practises. 

Crop water stress index (CWSI)-based irrigation 

surveillance is one example of an Internet of Things-

based strategy that has the potential to greatly improve 

agricultural productivity (Zhang et al., 2018). In smart 
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irrigation, the amount of water is adjusted based on the 

actual needs of the plant. It has the greatest influence 

on crop output, expenses, and health of any agricultural 

input. Two sensors soil humidity sensor and 

temperature and humidity sensor were utilised in smart 

irrigation system that was demonstrated. The 

environmental conditions were monitored by the 

temperature and moisture sensor, while the soil 

moisture sensor measured the soil's water content. The 

Raspberry Pi was linked with both water sensor 

network and supply system. A smartphone app for 

remote surveillance and water supply regulation was 

developed to make it possible to regulate water flow in 

both manual and computerised ways (Akubattin et al., 

2016). Many academics have created power-efficient 

systems because power is a major challenge in IoT-

based programmes. A wireless sensor network 

demonstrates power-efficient irrigation technique for 

cultivated crops that effectively managed water usage 

based on environmental factors (Nikolidaki et al., 

2015). Based on historical data as well as sensor-

measured humidity, temperature, and wind speed, this 

system calculated the amount of water required for 

typical irrigation. 

Mapping and monitoring: Agricultural businesses 

can save time and money by making more informed 

decisions with use of IoT data in field of organisation, 

management, and interaction with business partners. 

RFID and GPS used to create a detailed map of farm's 

growing circumstances, including the presence or 

absence of fertilisers, pesticides, and other chemicals. 

A GPS device is used to track various agricultural 

metrics and locate the exact position of an agricultural 

region using wireless network access. Architecture was 

created by Satyanarayana & Mazaruddin (2013) to 

track soil structure and condition remotely in 

accordance with crop cultivation requirements. In order 

to monitor and acknowledge real-time data processing, 

ZigBee is connected to other devices via WSN, 

including CMS, GSM, and GPRS. When unforeseen 

events occur, the GPS system notifies the farm 

manager via a communication link with the ARM or 

SMS so that the farmers can take appropriate action. 

Smart Fertilization System: Fertiliser, whether 

synthetic or natural, boosts plant growth and output. 

Fertiliser is usually sprayed manually. However, 

optimal fertilisation requires sensing to find the exact 

location, chemical components, and amount of 

fertiliser needed. To increase yield, fertilisers must be 

applied precisely (Cugati et al., 2003). Since the last 

decade, researchers have proposed a variety of 

fertilisation methods employing WSN and IoT. Inoue 

(2020) was presented a robotic fertilisation system that 

assesses soil fertility in real time via sensors. The 

system consisted of the user's input, the system's 

output, and a means to help in making decisions. The 

optimal amount of fertilisers required for plant growth 

was determined by the decision assist unit using real-

time sensory information from the sensors. 

Advanced Pathogen and Pest Detection Technology: 
Pest infestations are a major contributor to the 

agricultural sector's miserable output. These pests 

cause a number of significant plant diseases that limit 

the growth of the affected plants. However, disease 

prediction gives farmers an early heads-up so they can 

take the proper action to stop the disease in its tracks. 

Electronic devices used in pest control systems make it 

possible for people to spot traps within a certain range 

of these gadgets (Mahlein et al., 2012). Electronic 

devices are sensors that can determine environmental 

characteristics for additional investigation. Agricultural 

early disease detection and pest management systems 

have been the subject of extensive research employing 

more sophisticated and advanced technologies 

(Mahlein et al., 2012). In order to reduce the overuse 

of fungicides and pesticides, an Internet of Things-

based system for predicting plant diseases and pests 

was introduced. To determine whether there is a 

relationship between pest growth and weather, weather 

condition monitoring sensors are utilised. These 

sensors measure temperature, dew, moisture, and wind 

speed. Crops integrated with sensor technology 

facilitate the collection and transmission of data to 

cloud-based platform. Through this system, farmers are 

promptly notified of the alarming presence of 

significant insect infestation affecting their crops (Lee 

et al., 2017). 

The majority of Smart Agricultural technologies 

have predominantly depended on two approaches: the 

Internet of Things (IoT), which involves the utilisation 

of numerous sensors to evaluate the health of crops, 

and remote sensing, which involves assessing the 

health of crops by doing basic calculations on spectral 

pictures.  Based on a few characteristics, such as the 

sensors used in various apps, the availability of web or 

mobile services, etc., we may compare crop health 

monitoring software.  

Important concerns relating to WSN issues 

Since a few decades ago, SA has been utilised to 

increase crop output with less expense and labour, but 

farmers have been slow to adopt these cutting-edge 

practises for the reasons or difficulties listed below: 

Equipment cost: The majority of SA's support comes 

from hardware, which includes sensors, wireless nodes, 

drones, spectral imaging sensors, and other devices that 
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are used to evaluate a number of factors in real time. 

The high cost of development, maintenance, and 

deployment is just one of the constraints these sensors 

face. Smart irrigation systems, which need inexpensive 

hardware and sensors, are some technologies that are 

ideal for tiny arable land and are cost-effective. The 

high installation costs of drone-based crop health 

monitoring systems, however, make them only 

practical for huge arable land. 

Climate Change: Climate change is a major factor 

influencing the reliability of sensor data. Sensors 

deployed in the field are highly attuned towards their 

immediate surroundings and react quickly to changes 

in humidity, temperature, wind speed, light intensity, 

and so on. Atmospheric disturbances can cause 

interference in wireless communication channels, 

which can disrupt data transmission between wireless 

nodes and the cloud. Drones, satellites, and aeroplanes 

all rely on platforms that can be affected by the 

weather. Cloud pollution and other natural aerosols 

have an impact on the imagery that these systems 

capture.  

Literacy rate and communication networks: The 

adoption rate in SA is significantly impacted by 

literacy. Farmers cultivate crops based on their 

experience in developing nations with high illiteracy 

rates. They lose production because they don't use 

modern agricultural technology. Farmers need training 

to understand the technology, or else they will have to 

rely on outsiders to answer their questions and solve 

their problems. Due to the lack of resources and access 

to education, SA is therefore uncommon in 

undeveloped regions with low literacy rates. 

The speed at which devices and servers can 

communicate via 5G networks is 100 x that of 4G 

networks. Due to its increased data-carrying capacity 

relative to current networks, 5G technology is well-

suited for the transmission of data collected by remote 

sensors and drones. These technologies presently being 

tested in Smart agricultural environments.5G 

communication networks are crucial for modern 

applications that rely on safe and quick data transport 

for real-time data management and decision support. 

IoT data issues: Smart agriculture data issues include 

reliability, homogeneity, and volume.  

Data homogeneity: Agricultural data can be lost due 

to factors such as malfunctioning machinery, network 

outages, botched post-processing, and the introduction 

of harmful insects or diseases. Missing data causes 

inaccurate computations and hinders agricultural IoT 

applications.  

Data Reliability: The most common causes of missing 

data in agriculture include mechanical breakdown, 

power outage, bad weather, incorrect data labelling, 

and computational error. Smart agriculture uses data 

mining for crop safety, irrigation forecast, and 

pesticide reduction. Noisy and anomalous data hinder 

smart agriculture data mining. Thus, noise must be 

managed using proven methods.  

Data Volume: Big data also causes heterogeneous 

data. Agricultural information is collected by monitors, 

unmanned aircraft, sensors, and RFID tags. Due to the 

heterogeneity of huge data sets, frameworks can be 

used to lessen the resources required for their analysis. 

Smart Agriculture security risks related to Internet 

of Things (IoT) 

When data processing, administration, and storage 

are integrated with Internet access, a number of 

problems and security risks arise. Smart systems are 

made up of various hardware and software components 

from various manufacturers that are put between 

growing regions and the cloud. These particular 

qualities could lead to many security lapses and 

mishaps that jeopardise the smart system (Zhao& 

Ge2013). Research has indicated that Internet of 

Things (IoT) devices utilised in the domain of Smart 

Agriculture are vulnerable to physical manipulation, 

encompassing incidents such as theft, intrusions by 

rodents and livestock, as well as alterations in physical 

location or connectivity (Demestichas et al., 2020). 

The perception layer is primarily concerned with 

physical elements like sensors and actuators. Physical 

equipment may become unreliable due to malicious 

software, criminal conduct (intentional or not), or 

human error. Due to their limited memory, networking 

capabilities, and low energy consumption, IoT devices 

find it difficult to implement extensive and intricate 

algorithms. On the gateway, it is possible to suffer 

from routing assaults, DOS threats, and congestion 

threats. The bulk of modern Smart Agricultural apps 

are built on IoT technology, thus it's vital to highlight 

that they could immediately inherit its security flaws. 

In procedures like Message Queuing Telemetry 

Transport (MQTT)and Constrained Application 

Protocol (CoAP),security elements are deactivated by 

default; the operator must enable them in accordance 

with the project's goals (Goap et al., 2018).  

Conclusion 

In the pursuit of augmenting agricultural yields, 

contemporary farmers are increasingly adopting 

methodologies underpinned by "Smart Agriculture" 

(SA), leveraging cutting-edge technologies such as 

Wireless Sensor Networks (WSN), Internet of Things 
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(IoT), cloud computing, Artificial Intelligence (AI), 

and machine learning. Empirical studies consistently 

underscore the profound impact of SA-based practices 

on both environmental sustainability and operational 

efficiency. Central to the objectives of SA is the 

provision of decision-support systems predicated on a 

comprehensive array of crop-related variables, 

encompassing soil nutrient levels, soil moisture 

content, wind velocity, light intensity, ambient 

temperature, humidity, and chlorophyll concentration. 

These systems aim to optimize yield while 

concurrently minimizing resource inputs, including 

water, pesticides, and fertilizers. A pivotal aspect of 

resource optimization within SA frameworks involves 

the utilization of prescription maps, facilitating pre-

emptive resource allocation tailored to the exigencies 

of crop health at specific temporal junctures. The 

deployment of wireless field monitoring obviates the 

necessity for manual intervention, affording users real-

time oversight of agricultural productivity fluctuations. 

However, the development and implementation of such 

systems are beset by a myriad of challenges. Notably, 

the proliferation of devices generating voluminous data 

streams necessitates rigorous attention to data security 

considerations. Safeguarding data integrity, from 

inception through decision-making processes to storage 

within the agricultural ecosystem, emerges as a critical 

imperative.

 

 

Table 1: IoT technologies of several kinds in Smart Agriculture  

IoT technology Implementation in Agriculture Agriculture's Advantages 

WSN: Sensor capable of 

radio communication 

Combining sensors to track numerous physical 

properties 

Simple management and collecting of 

data from sensors 

Cloud computing: 
Internet-based computing 

that uses the cloud 

Provides computers and other devices with 

pooled processing resources and data as 

needed. 

Simple data gathering and management 

from cloud computing services like maps 

of agricultural fields, cloud storage, etc. 

Big Data Analytics: large-

scale data collections 

analysis 

This tool is employed for the examination of 

various data sets, including but not limited to 

fertiliser requirements, crop analysis, market 

demands, and crop inventory management. 

Subsequently, a forecast is generated 

employing data mining methodologies, and the 

agriculturalist obtains the pertinent information 

through a mobile application. 

Describe new generation of processes 

designed to assure better information 

gathering, discovery, and/or analysis so 

that farmers and related organisations can 

profit financially from huge quantities of 

very large amounts of information 

Communication 

Protocols: IoT system core 

components that enable 

connectivity. 

Various data interchange formats can be 

exchanged across the network  

Massive amounts of data easily collected 

and managed from sensors, cloud storage, 

and other sources 

Artificial intelligence: 

revolutionising the 

agricultural industry. 

By producing healthier crops, controlling pests, 

monitoring the soil, and in a variety of other 

ways, it benefits farmers. 

AI has significantly improved real-time 

monitoring, production, harvesting, 

processing, and selling in the agricultural 

sector. 

 

 

Table 2: IoT-based sensor applications in Smart Agriculture  

Sensors Application Working procedure Reference 

DHT11 Sensor 

 

 

 

Evaluates  field's 

temperature and 

humidity level  

The sensors in the firmware-based smart irrigation system 

are connected to the Arduino, and sensor values are 

continuously tracked. A GSM sim900A module transmits 

readings to the farmer's mobile device, which informs 

farm status. 

Sudarshan et 

al.,2019 

DHT22 sensor Temperature and 

relative humidity are 

measured. 

It measures the air around it using a thermistor and a 

capacitive moisture sensor and sends a digital signal to the 

Arduino data pin. 

Laskar et al., 

2016 

SEN0193: Soil 

Moisture 

Sensor 

Utilised to assess soil 

moisture levels and 

control irrigation in 

greenhouses 

The Soil Moisture Sensor measures dielectric permittivity 

via capacitance. Soil dielectric permittivity depends on 

water content. The soil's dielectric permittivity and water 

content determine the sensor's voltage.  

 

Ganesh et al., 

2018 
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and sustainable harvests 

YL69 Used to detect 

moisture content of 

soil  

The 16 Channel Analogue Multiplexer with Sensors 

connects the water level and soil moisture level.  The 

maximum voltage needed for both the water level sensor 

and the soil moisture sensor is 5 V. To gauge the amount 

of moisture in the soil, this sensor can be buried 

underground. 

Asnawi et al., 

2019 

10HS sensor Measure soil 

volumetric content 

 Yadav et al., 

2020 

STM-100, 

TMH-2000 

Used to measure real-

time soil moisture  

 Liao et al., 2021 

BH1750:  

Light sensor 

Used to Monitors 

light intensity and 

conducts studies on 

how light intensity 

affects greenhouse 

temperature. 

 Jayasuriya et al., 

2018 
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